A radio antenna (or just aerial) is a transducer that can send and receive radio waves (electromagnetic waves) designed for radio, TV, cell phones, radar or satellite. A radio antenna is a transducer with a usable efficiency can perform one or both of these energy conversions: marketable alternating electrical energy for transmission of radio wave energy. Marketable radio wave energy to alternating electrical energy (military antennas).
Within the transmission we can define co-polar diagram that represents the communication from to a desired polarity and polarized radiation pattern with the opposite polarity to that you already have. The most important parameters of the radiation pattern are: pointing direction: The maximum radiation. Directivity and Gain. Main lobe constitutes angular range around the direction of maximum radiation. Side lobes are other relative maxima, lower the principal value.
Beamwidth: The angular range of directions in which the radiation of a beam takes a value 3 dB below the maximum. The direction in which the radiated power is halved. Ratio at the secondary main lobe (SLL): The ratio in dB between the maximum value of main lobe and the maximum value of secondary lobe. Front-back ratio (FBR): The ratio in dB between the value of maximum radiation and the same direction and opposite direction.
Comparing an antenna yagi with a satellite, the antenna yagi have a F / B ratio of about 15 dB (depending on model and manufacturer) while for the parabolic relationship F / B is> 35dB (depending on model and manufacturer) . This is observed as "good" antenna on rejection of signals by the rear. The higher the paramentro in parabolic antennas will be better. The 15 dB of antenna yagui it can also be interpreted as the attenuation that would have on the system, if for example a bounced capture of a building, by the rear of the wave. Radiation resistance - when power is supplied to an aerial, radiating part of it and part is converted into heat dissipating. When talking about radiation resistance, it is made taking into account that cannot be measured directly.
If the antenna is replaced by the radiation resistance, this would do their job, ie, would produce the same amount of power that the antenna would radiate. The radiation resistance is equal to the ratio of the power radiated by the aerial divided by the square of the current in its feed point. One could obtain an mast efficiency, given that is the ratio of the radiated power and the dissipated power.
There are three basic types of transmitters: wire, aperture and planar antennas. Also, clusters of these aerials (arrays) are usually considered in the literature as another basic type of antenna. Wire transmitters are variants whose radiating elements are wire conductors having a negligible section relative to wavelength employment.
Every day use of aerials to transmit and receive signals (data) throughout the world by millions of people is ordinary. General: Everything is connected without cables using in some degree antennas for the exchange of information (data). An aerial is a (metal wire) device designed for the purpose of emitting or receiving electromagnetic waves into free space. A transmitter antenna transforms electrical energy into electromagnetic waves, and a receiver performs the inverse function.
If, in each of these ports, a diplexer, which separates the frequency bands of emission and reception, it will be a feeder four ports with a single antenna will be able to send and receive both polarizations simultaneously placed. At other times, these antennas have only two ports, one for emitting a polarization and the other to receive the opposite polarization.
Within the transmission we can define co-polar diagram that represents the communication from to a desired polarity and polarized radiation pattern with the opposite polarity to that you already have. The most important parameters of the radiation pattern are: pointing direction: The maximum radiation. Directivity and Gain. Main lobe constitutes angular range around the direction of maximum radiation. Side lobes are other relative maxima, lower the principal value.
Beamwidth: The angular range of directions in which the radiation of a beam takes a value 3 dB below the maximum. The direction in which the radiated power is halved. Ratio at the secondary main lobe (SLL): The ratio in dB between the maximum value of main lobe and the maximum value of secondary lobe. Front-back ratio (FBR): The ratio in dB between the value of maximum radiation and the same direction and opposite direction.
Comparing an antenna yagi with a satellite, the antenna yagi have a F / B ratio of about 15 dB (depending on model and manufacturer) while for the parabolic relationship F / B is> 35dB (depending on model and manufacturer) . This is observed as "good" antenna on rejection of signals by the rear. The higher the paramentro in parabolic antennas will be better. The 15 dB of antenna yagui it can also be interpreted as the attenuation that would have on the system, if for example a bounced capture of a building, by the rear of the wave. Radiation resistance - when power is supplied to an aerial, radiating part of it and part is converted into heat dissipating. When talking about radiation resistance, it is made taking into account that cannot be measured directly.
If the antenna is replaced by the radiation resistance, this would do their job, ie, would produce the same amount of power that the antenna would radiate. The radiation resistance is equal to the ratio of the power radiated by the aerial divided by the square of the current in its feed point. One could obtain an mast efficiency, given that is the ratio of the radiated power and the dissipated power.
There are three basic types of transmitters: wire, aperture and planar antennas. Also, clusters of these aerials (arrays) are usually considered in the literature as another basic type of antenna. Wire transmitters are variants whose radiating elements are wire conductors having a negligible section relative to wavelength employment.
Every day use of aerials to transmit and receive signals (data) throughout the world by millions of people is ordinary. General: Everything is connected without cables using in some degree antennas for the exchange of information (data). An aerial is a (metal wire) device designed for the purpose of emitting or receiving electromagnetic waves into free space. A transmitter antenna transforms electrical energy into electromagnetic waves, and a receiver performs the inverse function.
If, in each of these ports, a diplexer, which separates the frequency bands of emission and reception, it will be a feeder four ports with a single antenna will be able to send and receive both polarizations simultaneously placed. At other times, these antennas have only two ports, one for emitting a polarization and the other to receive the opposite polarization.
About the Author:
You can visit www.hascall-denke.com for more helpful information about Form Of And Function Of Military Antennas.
No comments:
Post a Comment